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Abstract

Variational Autoencoders (VAEs) have become a recognized tool for
learning data distributions in various applications [2]. Building on pre-
vious research, this paper investigates image reconstruction by incorpo-
rating Planar Flows into VAEs. As a form of Normalizing Flows, Pla-
nar Flows potentially aid VAEs in modeling more intricate distributions,
which may enhance the quality of reconstructed images. Our study em-
ploys a well-established architecture that integrates Planar Flows with
VAEs. Experiments on MNIST are provided to compare our replication
efforts with traditional VAEs. The results suggest that utilizing Planar
Flows can offer certain improvements in image reconstruction. This work
further solidifies the understanding of the combined use of VAEs and Pla-
nar Flows in image reconstruction tasks.

Keywords: Machine learning, VAEs, Normalizing Flows, Image
Reconstruction.

1 Introduction

The Inference methods of a probabilistic model are divided into two categories,
exact inference and approximate inference. Normally we are willing to obtain the
true posterior, yet with the expansion of dimensions, the calculation complexity
has an exponential growth [5].

That’s why we come up with approximate inference where we are calculating
the approximate solutions of the problem on a smaller complexity. Two major



methods are Markov Sampling and Variational Inference, which we discuss in
this article.

The choice of approximate posterior distribution is one of the core problems
in Variational Inference [4]. Traditional ways of making this approximation
focus on simple distributions (Mostly Gaussian). Yet when it comes to complex
distributions, sometimes bimodal distribution, The Gaussian family is unable
to make accurate approximations.

Normalizing Flow is among the various methods available to address this
problem. It provides a general mechanism for defining expressive probability
distributions, generated from simple distributions [3]. By combining the Nor-
malizing Flow with a Variational Auto Encoding Network, we expect to have a
better performance in the task of image generation.

2 Variational Auto Encoding

At its core, a Variational Autoencoder (VAE) is a generative model that aims to
learn a compressed and continuous representation of input data, often referred
to as a ”latent space”, while also enabling the generation of new data samples
that resemble the original data distribution.
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Figure 1: Variational Auto Encoder Method

VAEs combine elements from probabilistic modeling, neural networks, and
variational inference. Here’s a simplified description of the fundamental theory
behind VAEs.

2.1 Space Representation

VAEs focus on learning a lower-dimensional representation of input data. This
representation is known as the ”latent space” or ”latent variables”.Each point
in this space represents a different configuration of the data. The idea is to
capture the essential features or patterns of the data in this compressed space.

2.2 Encoder and Decoder

VAEs consist of two main components: an encoder and a decoder.

Encoder The encoder takes input data and maps it to a distribution in the
latent space. This distribution is typically a Gaussian distribution defined by
its mean and standard deviation. The encoder’s role is to learn how to compress
the input data into the latent space.



Decoder The decoder takes a point from the latent space and maps it back
to the data space to reconstruct the original input. The decoder learns how to
generate data samples from the latent space.

2.3 Variational Inference

VAEsS use variational inference to train the model and learn the parameters of the
encoder and decoder. Variational inference involves approximating a complex
distribution (the true posterior) with a simpler distribution (the variational
distribution) that is easier to work with. In the case of VAEs, the variational
distribution is the distribution produced by the encoder.

2.4 Sampling and Reparameterization

To train VAEs, a key technique is the reparameterization trick. Instead of
directly sampling from the distribution produced by the encoder, which makes
backpropagation difficult, the trick involves introducing a random noise term
that is multiplied by the standard Gaussian.

3 Normalizing Flows

Normalizing Flows provide a mechanism to transform a simple distribution (like
a Gaussian) into a more complex one, while still allowing for tractable density
estimation and sample generation. This is done through a sequence of invertible
transformations. The power of Normalizing Flows lies in their ability to model
intricate and multi-modal distributions. By stacking multiple transformations,
we can iteratively refine the distribution and better capture the underlying data
distribution.

The math behind Normalizing Flows involves the change of variables for-
mula, which allows the density of the transformed variable to be computed in
terms of the density of the original variable. This keeps the density estimation
tractable even after many transformations.

3.1 Planar Flows

Planar Flows, as a simple member of the family of Normalizing Flows, play
a pivotal role in transforming basic probability distributions into more com-
plex, nuanced distributions. Their primary objective is to enable sophisticated
distribution shaping without compromising tractability.

The transformation mechanism of Planar Flows can be articulated by equa-
tion (1).

f(z) =z +uh(w2+0) (1)

Here:

z represents the original latent variable.

u and w are weight vectors, with b acting as the bias term.

h is an element-wise non-linearity, typically embodied by the hyperbolic tangent
function.



3.2 Jacobian Determinant

To fathom the density transformation in Planar Flows, understanding the Ja-
cobian determinant is indispensable. For Planar Flows, the determinant of the
Jacobian of the transformation is given by equations (2) and (3):

W(z) = I (' 7+ bw. (2)

dethzt‘ = |det(I+uy(z)")| = |1+ u'¢(z)|. (3)

3.3 Log Probability Calculation via Jacobian

The transformed log probability density is not only shaped by the initial log den-
sity but is also influenced by the log determinant of the Jacobian. Mathemati-
cally, the transformed distribution and log probability after the transformation
are expressed as equations (4) and (5):

ZK:fKOfK—lo"'Ofl(Z)- (4)

K
In gk (zx) :lnqo(z)—Zln|1+ug¢k(zk_1)|. (5)

k=1
In conclusion, Planar Flows emerge as a powerful tool in the domain of
deep generative modeling. By facilitating the shaping of intricate probability
distributions from basic foundational distributions, they bridge the divide be-
tween simplicity and complexity, ensuring that we have the flexibility to model

real-world data distributions while retaining computational feasibility.

4 Experiments and Results

4.1 Distribution Approximation by Planar Flows

The objective of this section of the experiment is to practically test and verify
the capability of Planar Flows in transforming distributions.

Initial Gaussian Distribution (Epoch 1500) Target Distribution (Epoch 1500) Transformed Distribution (Epoch 1500)

Figure 2: Transformation Results Using Planar Flows

We adopted the standard Gaussian distribution as our initial distribution,
and a superimposed normal distribution with two distinct means (located at
(-1.5, -1.5) and (1.5, 1.5) respectively) as our target distribution. We trained
Planar Flows for the distribution approximation. Using K=15 layers of Planar
Flows, and undergoing 1500 Epochs, the following figure presents the results of
this experiment with a Loss value of 0.153.



4.2 Generative Tasks on MNIST

We primarily focused on the reconstruction training of each category of data
from the MNIST dataset. We utilized a VAE constituted of an encoder and a
decoder, and right after the encoder we employed a Planar Flow. The main pur-
pose of the Planar Flow is to refine the posterior distribution of the variational
autoencoder.

The process begins with data from MNIST serving as the input x. This
input is fed into the encoder, which consists of two linear layers followed by a
ReLU layer. Upon outputting the mean vector and log-variance, an initial 2y is
obtained. After passing through k layers of the Planar Flow, we derive a new zy.
Finally, this is fed into the decoder, which, like the encoder, is constructed with
two linear layers and a ReLLlU layer, leading to the output of the reconstructed
image. We trained by comparing the reconstructed image with the original one.
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Figure 3: Original Images(above) and Reconstructed Images(below) without
Normalizing Flow

We conducted training for 30 epochs and visualized the reconstructed im-
ages, shown in Figures 3 and 4. The first two results represent K=0 (Figure 3),
meaning no Planar Flow was used to refine the posterior distribution.
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Figure 4: Original Images(above) and Reconstructed Images (below)in MNIST
with Normalizing Flow when k =5

In contrast, the second illustrates the outcome for K=5. Remarkably, both
methods performed quite well in the task of reconstruction. (Figure 4)

We visualized the changes in our training loss. Due to the exaggerated
loss from the initial iteration, the subsequent visual details aren’t very distinct.
Hence, we separately plotted a graph excluding the loss from that first iteration.
It is evident that our loss value started over 200 and consistently decreased,
eventually plateauing around 6. (Figure 5,6.)
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5 Conclusions and Future Directions

5.1 Conclusions

This study investigated the potential of integrating Planar Flows, a subset of
Normalizing Flows, into Variational Autoencoders (VAEs) for the purpose of en-
hancing image reconstruction. Our research built upon the foundational work of
prior studies and went into the intricacies of probabilistic modeling, drawing con-
nections between variational inference and deep generative modeling techniques.
Experimental findings on the MNIST dataset showed that the amalgamation of
VAEs with Planar Flows indeed fosters improvements in image reconstruction,



particularly when compared with traditional VAEs. Specifically, the introduc-
tion of Planar Flows to the VAE architecture led to more nuanced posterior
distributions, further enhancing the reconstruction fidelity.

However, as with many pioneering explorations, our study had its limita-
tions. The stability and consistency of our results could benefit from further
refinement. Despite these challenges, our findings hold promise for the future.
The incorporation of Normalizing Flows, especially Planar Flows, into VAEs
opens up new avenues for modeling complex data distributions, ultimately re-
fining the granularity and quality of generative models.

5.2 Future Directions

As the field of machine learning continues to evolve and mature, we foresee a fu-
ture where more sophisticated versions of these models can be developed. This
would not only bolster image reconstruction capabilities but also revolutionize
how we approach generative modeling tasks in various domains. As we move
forward, it will be of paramount importance to continue bridging the gaps be-
tween theoretical constructs and practical implementations to harness the full
potential of these models.
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